Modeling of Prediction Tuberculosis

Modeling of Prediction Tuberculosis Prevalence
Based Geographically Weighted Poisson Regression

Suprajitno, Sri Mugianti, Wiwin Martiningsih, Wagiyo
Lecture at Nursing Department
Poltekkes Kemenkes Malang
Poltekkes Kemenkes Semarang

 

Abstract

Tuberculosis is an infectious disease was cause of death. Tuberculosis patient were continues each year. In epidemiology, the environment and the human were two factors of tuberculosis prevalence, particularly individuals at risk of infection. Basically, tuberculosis prevalence able to predicted with statistically to determine of the two main factors in epidemiology. The purpose of this research was to produce a formula prediction model based GWPR (Geographically Weighted Poisson Regression). Methods: Research design was descriptive. The research sample as much as 111 Tb patients were selected by simple random sampling, which all pat ients were recorded in Dinas Kesehatan Kota and Kabupaten Blitar on 2015, January – May. Inclusion criteria were Non MDR (multi drug resistance)  and  not  being  hospitalized.  Environmental  factors  were  predictors  is  spacious  house,  spacious  living  room,  spacio us bedrooms, number of bedroom windows, spacious bedroom window, living room temperature, humidity living room, and the amount   f sunlight entering the homes of people Tb. The human factor was a patient body weight. Result:, where X1 = weight, X2 = area of homes of people, X3  = spacious living room patients, X4  = spacious bedrooms patients, X5  = number of bedroom window sufferers, X6  = spacious bedroom window sufferers, X7 = the temperature of the patient's living room, X8 = humidity living room patients, and X9 = the amount of light entering the living room. Analysis: Formula produce a proportion of 0.07% and a predictor effect by 27%. Discuss: Before using a formula to predict tuberculosis prevalence needed to measurements variables and population that can be predicted precisely match the desired time.

 

Full Text Download
 

Reference

[1]                 .  Chapter  13.  Poisson  Regression  Analysis, http://www.oxfordjournals.org/our_journals/tropej/onlin e/ma_chap13.pdf
[
2]                 . Chapter 4 Poisson Models for Count Data, http://data.princeton.edu/wws509/notes/c4.pdf
[3]  André  
Damião  da  Costa  Martins,  2011.  Stochastic models for prediction of pipe failures in water supply systems, Dissertação para obtenção do Grau de Mestre em Matemática e Aplicações, https://fenix.tecnico.ulisboa.pt/downloadFile/395143446036/Tese_Andre_Martins.pdf
[4]  Auda Fares, 2011. Seasonality of Tuberculosis. Journal Global Infectious Dissease 2011 Jan-Mar: 3(1): 46-55. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068579/
[5]  Badan  Litbangkes  Kementerian  Kesehatan  RI,  2013. Riset Kesehatan Dasar 2013.
[6]  Bagoes Widjanarko, Priyadi Nugraha Prabamukti, dan Nunuk   Widyaningsih,   2006.   Analisis   Faktor-Faktor Yang Mempengaruhi Praktik Pengawas Minum Obat (PMO) dalam Pengawasan Penderita Tuberkulosis Paru di Kota Semarang. Jurnal Promosi Kesehatan Indonesia Vol. 1 / No. 1 / Januari 2006: 15-24.
[7]  Crawley, M.J. Statistics: An Introduction Using R, 10. Analysing     Proportion     Data:     Binomial     Errors, http://www.math.chs.nihon- u.ac.jp/~tanaka/files/kenkyuu/ProportionData.pdf
[8] Febrianti,  Thresya,  2011.  Hubungan  Karakteristik Lingkungan Fisik Rumah Dengan Kejadian Tb Paru Positif di Kecamatan Karangrayung Kabupaten Grobogan. Tesis. Semarang: Universitas Diponegoro.
[9]  Germ´an Rodr´ıguez, 2013. Models for Count Data With Overdispersion, http://data.princeton.edu/wws509/notes/c4a.pdf
[10] Harini,   Setyo,   2005.   Hubungan   waktu   pemberian imunitas BCG dengan kejadian tuberkulosis paru pada anak di  Kabupaten Sleman Propinsi Daerah Istimewa Yogyakarta.   Tesis.   Yogyakarta:   Universitas Gadjah Mada.
[11] Murtiningsih, D.A., Tri Pujikurniawan, dan Farid Setyo Nugroho, 2014. Pengaruh Luas Ventilasi terhadap Kejadian   Tb   Paru   di   Wilayah   Kerja   Puskesmas Sukoharjo Kabupaten Sukoharjo Tahun 2013.  Skripsi. Surakarta: Universitas Muhammadiyah Surakarta.
[12] Nakaya,  T.,  A.  S.  Fotheringham,  C.  Brunsdon,  M. Charlton, 2005. Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine, Volume 24, Issue 17, pages 2695–2717, 15 September 2005.
[13] Peraturan    Menteri    Kesehatan    Republik    Indonesia NOMOR 1077/MENKES/PER/V/2011 tentang PEDOMAN PENYEHATAN UDARA DALAM RUANG RUMAH.
[14] Perhimpunan  Dokter  Paru  Indonesia  (PDPI),  2006. Tuberkulosis: Pedoman Diagnosis dan Penatalaksanaan di Indonesia.
[15] Pudji Lestari, Florentina Sustini, Anang Endaryanto, and Retno Asih, 2011. Home humidity increased risk of tuberculosis in children living with adult active tuberculosis   cases.   Universa   Medicina,   September-December 2011, Vol. 30 – No. 3: 138 – 145.
[16] Sri  Marisya Setiarni, Adi Heru Sutomo, dan Widodo Hariyono, 2011. Hubungan Antara Tingkat Pengetahuan, Status Ekonomi, dan Kebiasaan Merokok dengan Kejadian Tuberkulosis Paru pada Orang Dewasa di Wilayah Kerja Puskesmas Tuan-Tuan Kabupaten Ketapang Kalimantan Barat. Jurnal Kesehatan Masyarakat Vol 5 No. 3, September 2011: 162-232. Yogyakarta: Universitas Ahmad Dahlan.
[17] Wanti, Qomariyatus Solihah, dan Martha Djapawiwi, 2015. Relationship   between   House   Condition   and Tuberculosis   Incidence   in   Timor   Tengah   Dis International  Journal  of  Science:  Basic  and  Applied Research (USBAR) (2015) Volume 21, No. 1, pp 344-349. http://gssrr.org/index.php?journal=JournalOfBasicAndA pplied
[18] William  A.  Wells,  2006.  Curing  TB  with  sunlight. Journal of Cell Biology 2006 Mar 27:172(7):958.  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063771/#!po=16.6667
[19] Zakiudin Munasir, 2001. Respons Imun terhadap Infeksi Bakteri. Sari Pediatri, Vol. 2, No. 4, Maret 2001: 193 –197.